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ABSTRACT The evolutionary dynamics of the joint distri-
bution of genotypes and phenotypes is studied. The model,
originally devised to study the joint effects of Mendelian and
other types of transmissions, provides results of interest also to
the theory of direct Mendelian transmission with natural se-
lection. Assuming bivariate normal distributions, it is shown
that in the latter case genotypic and phenotypic means and
variances, and genotype-phenotype correlation can be ex-
pressed recursively as functions of the parameters for the se-
lection, environmental, and mutation variance. Equilibria and
rates of approach for these moments are calculated. It is also
proved that in the presence of selection the heritability, defined
as the ratio of expected genotypic to expected phenotypic
variance after selection, is greater than that before selection by
a predictable amount and that it can be greater than unity.

In earlier papers (1, 2) we have considered the "phenotypic"
transmission and evolution of continuous traits. We believe the
models thus generated can be useful for the understanding of
some aspects of cultural evolution. Genotypic transmission of
the mode of reaction to environmental stimuli, accompanied
by phenotypic transmission, has been the object of other studies,
for a continuous trait (3) and for a discontinuous trait (4). In the
latter case we also studied the equilibrium behavior of the
phenotypes and genotypes.

This work has led us to introduce an approach in which the
distributions of genotypes and phenotypes are considered
jointly in problems of transmission and evolution. Such an
approach should prove particularly fruitful in the study of
transmission and evolution of traits observed phenotypically
but with some genotypic basis. The purpose of the present
paper, however, is limited to showing how this approach can
be developed and applied to some classical problems of Men-
delian transmission and Darwinian evolution.
The literature on the dynamical theory of evolution of con-

tinuous variation is not extensive. Two papers are of particular
relevance to the study presented here. Kimura (5) has used a
diffusion approximation argument to predict equilibrium
values of a continuous polygenic trait under mutation and se-
lection, assuming a quadratic deviation selection function.
Slatkin (6) has proposed a general model producing a recur-
rence for the distribution of continuous "phenotypes" subject
to an unspecified transmission rule and to selection. In neither
of these studies was the contribution of environmental variation
to overall phenotypic variation pursued. The fact that selection
acts on phenotypes and not on genotypes, whereas Mendelian
transmission involves genotypes only, suggests that for a com-
plete treatment it is necessary to consider the joint distribution
of genotypes and phenotypes. This we now proceed to do.
General model
Our general recurrence relation for the joint probability density
* This is paper no. 1 in a series.

function (k* of phenotypesf and genotypes g after selection on
the phenotypes takes the form

4A*'+(fXg)
= WT1W (f)fffaf ,t (hkI',k') T (fig hkh',k) dhdkdh'dk'

[1]

where the subscripts denote the time in generations. The
function (*t+ I(.,.) is the joint probability density of phenotypic
values and genotypic values for a random individual from the
reproducing adults of generation t + 1 (i.e., after selection). On
the right side of [1] the function It(-,-,-,-) denotes the joint
probability density of phenotypes and genotypes among mating
pairs, the first and second variables (h, k) referring to the
phenotype and genotypes of one member, and the third and
fourth variables (h'Ik') referring to the phenotype and genotype
of the other member, respectively. 4Pt can be expressed as

41t(h,k,h',k') = 1 *t(hk)p*t(h',k') + Xt(hkh',k') [2]
where Xt(-,-,-,-) is identically zero under random mating and
different from zero under assortative and/or selective mating
or differential fertility of the mating pairs. T is the transmission
law, namely the probability that a young individual will be of
phenotype f and genotype g if it is produced by a mating be-
tween parents (h, k) and (h', k'). W(f) is a fitness function (i.e.,
the probability that individuals of phenotype f survive to ma-
turity). W is the normalizer obtained by integrating the rest of
the expression [1] with respect to f and g.

In [1] we consider a generation cycle from adult to adult. An
equivalent expression can be given for a cycle from new zygote
to new zygote, but is less useful for those cases where the pop-
ulation is examined at phenotypic maturity. Equivalent
transformations are given elsewhere (4) for the discontinuous
case.

Special assumptions
We proceed to incorporate into [1] the assumptions customary
in the study of continuous variation. It is assumed that there is
random mating with no fertility difference, as well as an ad-
ditive polygenic system (that is, additivity over loci, no domi-
nance, and no genotype-environment interaction). Selection
is assumed to be "optimizing" (5-9) and expressed as

W(f) = exp [-(f- y)2/2S] [3]

where , is the optimum phenotype and S is an inverse measure
of the strength of selection (i.e., S small implies very strong
selection, S -, o for a selectively neutral phenotype).

At time t the probability distribution of (ft, gt) is 4't, as-
sumed to be bivariate normal. At*gt, /*f t, G*t, F*t, and p*t,
respectively, denote the genotypic and phenotypic means and
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variances and the correlation between phenotype and genotype
in reproducing adults at time t; the asterisk indicates that they
are taken after selection. These parameters completely define
the distribution at time t, after selection.
The sequence of steps and symbols used in the model is out-

lined in Table 1. At a single locus with n alleles Al, A2, , An
of effects al, a2, ..., an and with frequencies p1, P2, ..., pn the
total genotypic variance in the population is 2 Es Hjz pipj (ai
-aj)2, whereas the average genotypic variance of the progeny
of a random mating is exactly half as much. This motivates the
assumption that for a sufficiently large number of loci with
additive effects, if the genotypic variance in the parental
population is G*t, then the variance of the progeny from a
mating between parents with genotypic values k and k' is G*t/2
independent of k and k'.

It is clear that for a character controlled by a small number
of genes, within family variances may differ between families.
Also, in reality selection causes the progeny variance to vary
from G*t/2. Our model assumes that the genotypic value of
offspring from a mating of parents with genotypic valkes k and
k' is a gaussian random variable with mean [(k + k')/2] + mg
and variance G*t/2 + M. Here mg is the change in the ge-
notypic mean due to mutation analogous to 2m in Kimura's
paper (5), whereasM is the amount added, because of mutation,
to the genotypic variance of the offspring and is analogous to
2v in Kimura's treatment. M would be proportional to the
(constant) mutation rate per zygote (twice that per gamete) and
to the variance of changes in allelic effects determined by the
mutation. We then assume that if an offspring has genotypic
value g, his phenotypic value f is normally distributed around
g with "environmental" variance E. The transmission function
T in [1] is then completed by the assumption of independence
of the genotypic and phenotypic transmission rules. Thus

T(fg; h,kh',k')

exp - [g - (k + k')/2 -Mg]22(G*t2 + M)]

27r(G*t/2 + M)
exp I-(f - g)2/2EJ [4]

V 2irE

It should be noted that T as written in [4] is independent of
h and h'. A treatment incorporating phenotypic transmission
along the lines of our previous work (3) is in preparation.

With T as in [4], the joint distribution of genotypic and
phenotypic values before selection is completed by integrating
T using the mating density [2], with Xt = 0, as in [1]. Our as-
sumption on T entails that h and h' are essentially irrelevant
in [1], which then reduces to a double integral over k and k'.
When this integration is carried out, and before the insertion
of W(f), we have the joint phenotypic-genotypic density as

0t+l (fg) = Nf(g,E)Ng(/I*g., + mgG*, + M) [5]

where in [5] the notation Nf(g, E) denotes the normal phe-
notypic density with mean g and variance E, while Ng(G*gt
+ mg, G*t + M) denotes the normal genotypic density with
mean Aggt+ 1 = *gst + mg and genotypic variance Gt+ 1 = G*t
+ M. The second factor on the right side of [5] arises from the
fact that the offspring genotypic value, conditional on the pa-
rental genotypes, has variance G*t/2 + M, whereas the mid-
parental genotype has variance G*t/2, their sum being G*t +
M. At this stage the phenotypic variance is Ft+ I = Gt +1 + E,
the phenotypic mean is .fat+ 1 = Mgst+ 1 = I*gt + mg, whereas
the correlation between phenotypic and genotypic values is
Pt+i = -/6t+ 1Ft+

Effect of selection
To comnplete the formulation [1] it remains to multiply [5] by
W(f)/W. Of course this does not alter the bivariate normal
character of the distribution, but it does change all of the pa-
rameters. In fact we have

+*1(fsg) a exp[ 2 {Gt+ (1-p2t+1) + Ft+1(1 -p2,
2pt~l(f - igt+lXg - Aglt+l)

(1 -P2 +t)+ Ft+1Gt+
_ 1 {(g - *ght,,),cxep 2[1- (P*,+1)2] G*,+l

+ (f - *gt1)2 _ 2p*t+i(f - --j*g t+l)}] [6]
F~~t~l V~~F*,jiG*t+i

where the parameters /L*gt+ 1, 1t*ft+ I, G*t+ 1, F*t+ 1, and
P*t+ 1 are as in [7]

G*t+l = (G*t + M)(E + S)/(E + G*t + M + S) [7a]

F*t+l = S(E + G*t + M)/(E + G*t + M + S) [7b]

(p*t+1)2 = S(G*, + M)/(E + S)(E + G*, + M) [7c]
'1ft+i = is(A gst + mg)

+ (E + G*, + M)A4/(E + G*, + M + S) [7d]

94g.t+i = $(E + S)
(A*g t + mg) + (G*t + M)MI/(E + G(*t + M + S) [7e]

In the above recursion system the parameters E, M, and S
are written as constants. If they depend on time the analysis is
substantially more complicated. From [7a], which is a linear
fractional transformation, it follows that G*t converges geo-
metrically fast to

G* = Ml 1/ + 4(E + S)/M-11/2 [8a]
From [8a] in [7b] the phenotypic variance after selection F*t
converges as G*t GG* to

F* = S(E + G* + M)/(E + G* + M + S) [8b]
The convergence of G*t and F*t to C* and IF* is at the geo-
metric rate Xi with

A1 = (E + S -G*)/(E + G* + M + S)

= [G*/(G* + M)]2 [9]
The correlation between genotype and phenotype, after se-
lection, P*t, converges to the limit

(p*)2 = S(G* + M)/(E + S)(E + G* + M) [10]
along with G*t at the geometric rate Xi. The phenotypic and
genotypic means converge to

Sing E + S g 1
f* + Sm. and y* = ,u + - mg [11]

respectively, at the asymptotic rate.

A2 = (E + S)/(E + G* + M + S) = G*/(G* + M) [1]
per generation.

After selection the parametric "heritability" is

*) - */* M(E + S)[1 + /1 + 4(E + S)iM] [131
S[2E + M + M V1 + 4(E + S)/M]
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Table 1. Joint distributions of genotype (g) and phenotype (f): A generation cycle

Symbols of bivariate normal parameters

Genotype Phenotype Phenotype-
Density genotype

Variables used in text function Mean Variance Mean Variance correlation
Parent 1 Parent 2

phenotype genotype phenotype genotype b*t (fig) g, t t It"'tFit
h k h' k'

I mutation,
mating,

segregation

I phenotypezygote -
s

phenotype Pt+ i (fig) It+iGI + l /, t÷1 Ft+ I Pt+l

selection

phenotype genotype
f g

*Et+nter)ergtt+ovlt+usatt+sF*t+lect+
*Entries refer to values after selection.

Thus, if M[1 + Vi + 4(E + S)/M] > 2S, this heritability is
greater than unity. This condition reduces to S2 < M(E + 2S),
or, if E >> M, S < VIW. Note that the equilibrium values
before selection are

G = G*+ M,F= E + G* + M,p2=G/F [14]

and the ratio of the heritability after selection [13] to that before
selection (p2 in [14]) is

(h*)2/p2 = 1 + EIS [14a]
Also (p*)2 from [10] is equal to Sp2/(E + S) and therefore the
genotype-phenotype correlation is reduced after selection by
the factor S/(E + S). The latter and [14a] are valid for all t.

Remarks. IfM << S and E = 0, the formula for the genotypic
variance reduces to VIMS, which is identical to the result ob-
tained (5) by the diffusion approximation method. Our S =
1/(2K) in Kimura's notation (5) for the haploid case. Equilib-
rium values of the genotypic variance similar to [8a] have been
obtained by Latter (7) and Lande (8) using approaches quite
different from the above.

Applications
Two examples of optimizing selection analyzed in ref. 9, stature
and birth weight in man, may be further explored using the
above model. It was found that the variance of male stature
observed before marriage is P = 42.3 cm2, and that of married
males is F* = 35.8 cm2, with negligible difference between the
means. If we define R to be the ratio of the variance j5* after
selection (in this case, due to mating) to that before selection
F (R = F*/F), R at any generation t is, from [7], equal to S/(E
+ G* + M + S) = (F + S). HereR = 0.846, so that S = RF/(1
- R) = 5.5F. At equilibrium, with H the heritability before
selection, we derive from [8a] the mutation varianceM relative
to the genotypic variance before selection (d* + M), or to the
phenotypic one, as

M = H(1-R)a* + M
M M= H'(1
F E+G* +M

[15a]

[15b]

If we assume equilibrium, additivity, and a heritability before
selection of H = 0.5, the mutation variance is found from [15b]
to be about % of the total phenotypic variance before selection.
The only source of selection estimated here is that due to mat-
ing; other sources, probably acting earlier, would decrease the
total value of S and therefore the value of R; the relative esti-
mate of the mutation variance would therefore increase. As-
suming other sources of selection to be negligible, the estimates
of E, M, S relative to P are E = 0.5F, M = 0.04F, S = 5.5F.
For human birth weights, the variance before selection (due

to neonatal mortality) is about 1.7 pounds2 (0.35 kg2), and the
variance S from neonatal mortality is about 16 pounds2 (3.3
kg2), or 9.4 times the phenotypic variance. Again, assuming this
as the sole source of selection, etc., R = 16/(1.7 + 16) = 0.904.
The heritability here is probably extremely low, say 0.05, giving
a mutation variance 4000 times smaller than the total phe-
notypic variance.

Discussion
The approach we have taken allows the complete exposition
of the time-dependent behavior of the bivariate normal phe-
notype-genotype distribution. The approach of Prout (10) in
an investigation of problems in progeny testing is similar in
some respects to ours, although our primary interest is the ev-
olutionary process rather than the short term variance analysis.
The central quantity for these dynamics is the genotypic vari-
ance. In Kimura's (5) treatment the distribution of the genotypic
values approached normality. When this is true and the dis-
tribution of environmental effects on phenotypes within gen-
otypes as well as the selection function are normal, the bivariate
normal distribution must emerge. Our treatment takes as its
point of departure that the phenotypes and genotypes have a

Genetics: Cavalli-Sforza and Feldman
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bivariate-normal joint distribution. Clearly, the conclusions we
have reached may be modified if the selection function departs
from that postulated in Eq. [3] or if the phenotypes are not
normally distributed within genotypes. One may conjecture,
for example, that if there were sufficient fluctuation in the
environmental or selection variance over time, an equilibrium
distribution might not be attained. In spite of these caveats
optimal selection of the type postulated by [3] has been docu-
mented in several cases (9). A classical example is that of human
birth weight (9, 11).
The recursion system [7] and its equilibrium [8], [10], and [11]

demonstrate certain unexpected features. One striking con-
clusion is that heritability, defined as the ratio of the genotypic
to phenotypic variance, when it is calculated after selection,
G*IF-*, can be greater than unity. In fact this heritability after
selection is greater than that before selection by a factor 1 +
E/S, where E and S are the environmental and selection vari-
ances, respectively. (When selection is strong, S is small.) The
role of environmental variation in amplifying this selective
adjustment to the heritability is greater the more intense the
selection. Common estimates of heritability (based on corre-
lations between relatives) that ignore selection will have a bias
that depends on E and S. This appears difficult to estimate
without an evaluation of the selective regimes involved and
requires further theoretical studies.
The apparent paradox of the heritability greater than one

can be resolved intuitively by noting that if selection is so intense
(i.e., S so small) that only one phenotype can survive, the phe-
notypic variance F*t can be smaller than the genotypic G*t
(i.e.; many genotypes can produce the same phenotype). From
[13], the heritability after selection becomes unbounded as S

0.

It is clear from [7] that the fate of the genotypic variance
depends on environmental parameters. Thus, if the mutation
variance M is small, the genotypic variance at equilibrium is
approximately M/A4(E + S). [See also Kimura (5) where E =
O.]

It is of interest to develop a partition, analogous to the classical
one, of the total phenotypic variance (at any generation) before
selection. Suppressing the time subscript, write F = F* + F'
with F* the phenotypic variance remaining after selection and
F' that lost because of selection. Then from [7] we have

F' = F(E + G)/(E + G + S)

where G is the genotypic variance before selection. The phe-
notypic variance remaining after selection, F* = FS/(E + G
+ S), can be partitioned into the genotypic C* and the envi-
ronmental E * variance after selection, plus a negative geno-
type-environment interaction term, i.e.,

F* = G* + Eg + 2W*EG
where

E* =
E(G + S)
E+G+ S [15]

and
-EG

WGE E + G + S

Clearly this is one of many possible partitions.
It is of considerable interest to augment the basic scheme

presented above to include dominance, interaction between
genotype and phenotype, and other types of transmission and
selection. The effects of these on common estimates of herita-
bility are important.
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